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ABSTRACT
Degradation of software performance can become costly for com-
panies and developers, yet it is hardly assessed continuously. A
strategy that would allow continuous performance assessment of
software libraries is software microbenchmarking, which faces
problems such as excessive execution times and unreliable results
that hinder wide-spread adoption in continuous integration. In my
research, I want to develop techniques that allow including software
microbenchmarks into continuous integration by utilizing cloud
infrastructure and execution time reduction techniques. These will
allow assessing performance on every build and therefore catching
performance problems before they are released into the wild.
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1 PROBLEM STATEMENT
Software performance assessment is a crucial task in software en-
gineering to ensure that a new software release does not impair
user-perceived performance. Performance degradation can surface
in various forms, such as high response time latency, low through-
put, or excessive resource utilization. Such a degradation can have
detrimental effects on the revenue and reputation of a company
as well as on the necessary time and effort to fix the issue. For
example, Google reported that an increase of 500ms response time
in its search service costs them about 20% revenue [22]. Similarly,
Amazon loses 1% revenue if the latency during checkout grows by
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100ms [21]. Compared to functional bugs, performance problems
stay undiscovered much longer [15] and are harder to fix [11].

Although these arguments would suggest that performance
should be assessed regularly and arguably on every change, re-
cent studies on continuous integration (CI) and software builds did
not find any indication that this is the case [3, 12, 26, 31]. Perfor-
mance testing is a solution to assess performance that would fit
into the context of CI, but there are multiple reasons why it is not
standard practice yet. This includes, but is not limited to, extensive
test execution times; unreliable results; required in-depth knowl-
edge about compiler/runtime internals, measurement biases, and
statistics; and lack of adequate tooling [4, 9, 13, 16, 17, 19, 24, 30].

Performance testing comes in two flavors: load testing and soft-
ware microbenchmarking. Load testing requires a deployed and
running system where defined application programming interfaces
(APIs) (e.g., REST endpoints) are performance tested, similar to
functional system/integration tests. On the other hand, software
microbenchmarking is the performance-testing-equivalent of func-
tional unit tests where small software components (e.g., methods)
are tested. Software libraries, such as collections or logging, cannot
be deployed as a system which is required for load tests, therefore
software microbenchmarking is the technique of choice.

2 PROPOSED RESEARCH
I envision that software performance problems can be detected al-
ready at build time by executing software microbenchmark (SMB) in
CI, even in high-code-velocity environments. This would identify
performance changes before new software releases and therefore
(ideally) not exposing consumers to performance bugs. Among the
many challenges outlined above, this mainly demands solutions
for two of the problems: (1) long execution times and (2) uncer-
tain results due to unreliable execution environments (e.g., cloud
infrastructure).

In my PhD, I want to design solutions for reducing the time spent
in performance testing of software libraries by prioritizing/selecting
the tests to run on every build and utilize cloud infrastructure for
test executions that yield reliable results. These solutions will lower
the complexity of rigorous performance test execution with cheap
and highly-available resources, utilize valid statistical techniques
for change assessment, and prioritize and select the tests to be run.
Consequently, the time-to-feedback on the performance is reduced.

In order to assess this thesis’ goals, I will investigate and answer
the following research questions.

RQ 1 How comprehensive are existing software microbench-
mark suites, and do they lend themselves to rigorous soft-
ware performance evaluation?
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First, I studied [17] the current state of software microbench-
marking, understand whether an inclusion in CI is feasible, and
identify problems that hinder adoption. This includes a quantita-
tive study on the extent of SMB suites (i.e., sizes and execution
times) and a preliminary slowdown detection study of the individ-
ual benchmarks in bare-metal and cloud environments.

RQ 2 How can we run software microbenchmarks in cloud
environments and deal with the uncertainty that comes with
it?

Cloud instances are cheap, on-demand execution resourceswhich
are maintained by a provider (e.g., Amazon Web Services (AWS))
and therefore easy to use by software developers. Performance en-
gineering best practices require performance measurements (in my
case: tests) to be executed in controlled environments in order to
have as little interference as possible by, e.g., background tasks or
co-located tenants. Unfortunately, these requirements are contrary
to what cloud instances offer. As hosted CI servers are typically
deployed on cloud instances, and the goal is to enable continuous
performance testing for everyone; I investigated [18] which cloud
providers and instance types deliver acceptable performance test
results, which deployment strategies are preferable, and which sta-
tistical tests are best for slowdown detection. This addresses the
problem of performance test result uncertainty.

RQ 3 Are traditional test case prioritization and regression test
selection techniques good at reducing the execution time of
software microbenchmark suites, ...
RQ 3a with respect to the importance of API features?
RQ 3b with respect to the quality of their results in certain

execution environments?
Running performance tests on every build faces the major ob-

stacle of extensive runtimes [13]. Hence, I want to address this
problem by devising novel approaches to reducing the time spent
in performance testing activities by focusing on the relevant tests
to execute. For the third research question, I want to evaluate time-
reduction techniques from functional/unit testing research (i.e., test
case prioritization (TCP) and regression test selection (RTS)) and
their applicability for SMB. I envision two approaches that extend
these traditional techniques to better suit software microbench-
marking of libraries: (1) I want to focus on SMB that test more
important functions of the library for API consumers, and (2) I
want to favor SMB with better result quality (i.e., stabler results and
smaller detectable slowdowns) in a defined execution environment.
These two techniques will address the problems of long runtimes
and performance test result uncertainty.

RQ 4 How frequently can we execute software microbench-
marks as part of continuous integration, and are we able to
capture performance problems faster?

With the insights and techniques from RQ 1, RQ 2, and RQ 3, I
will have tackled the two outlined problems, i.e., long execution
times and uncertain test results, but one still misses a quantification
of how frequently we can run SMB (as part of CI), and therefore
whether one is able to detect performance problems faster and
before a new software version release. Consequently, I plan to
combine the techniques from RQ 1, RQ 2, and RQ 3to answer the
forth research question.

3 RQ 1: CI-INCLUSION FEASIBILITY
As a first step in [17], we conducted an initial investigation whether
it would be possible to include SMBs into CI and devised a method-
ology developers can follow to assess their own SMB suite for
CI-readiness. This study looked at three aspects of SMBs and out-
lined the properties which are challenging for CI inclusion. These
three aspects are: (1) the extent of existing SMB suites in form of
number of individual benchmarks and total runtime, (2) SMB re-
sult stability across multiple identical executions in bare-metal and
cloud environments, and (3) whether SMB suites are able to detect
actual slowdowns. To assess the three aspects, we executed the full
SMB suites of 10 open-source software (OSS) projects written in
two languages (i.e., Java and Go) multiple times on a bare-metal
server and a cloud instance from Google Compute Engine (GCE).

Based on these executions we assessed the mean runtime across
multiple executions and the number of executed benchmarks, which
took between 12 minutes and 8 hours and 45 minutes and ranged
from 16 to 983 individual benchmarks. These runtimes confirm that
some suites run for too long to be executed on every build while
others might be small enough to be run in its entirety.

We further studied the variability of SMB suites between identi-
cal executions in a particular environment, which gives an indica-
tion whether a benchmark could be used for slowdown detection.
The results confirm the intuition that bare-metal environments
produce more stable results than cloud environments. Nonetheless,
they also indicate that running performance test in the cloud might
be feasible as most benchmarks show an increased but acceptable
variability compared to bare-metal environments.

Based on the variability insights, we finally studied whether
benchmark suites are able to find injected slowdowns in often-
used parts of its project’s API. Depending on the study subject,
SMB suites are able to detect slowdowns when executed in cloud
environments. The limiting factor is the size of the slowdown to be
detected, which ranges for the studied subjects from 10% to 260%
relative slowdown size.

These results suggest that executing performance tests in cloud
environments is feasible if the size of the slowdown is large. The
biggest issue is the result variability originating from the execution
on cloud instances. Regarding inclusion in CI, the bigger challenge
is the excessive test suite runtimes.

4 RQ 2: SOFTWARE MICROBENCHMARKING
IN THE CLOUD

In [18], we explored SMB executions in cloud environments on a
broader spectrum, studied benchmark variability, and investigated
techniques that work best for slowdown detection.

We selected 20 benchmarks from two Java projects (log4j2, Rx-
Java) and two Go projects (bleve, etcd), where each project con-
tributed five benchmarks ranging from very stable to very unstable,
based on the variability results from Section 3. As execution envi-
ronments, we selected 3 cloud providers (i.e., AWS, Microsoft Azure,
and GCE) with 3 instance types each and a hosted bare-metal envi-
ronment from IBM Bluemix. We executed the benchmarks repeat-
edly on multiple levels: (1) within the same execution, (2) within
the same instance, and (3) across multiple instances of the same
type.
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In contrast to the previous study from Section 3, we based our
variability analysis and the slowdown detection on standard sta-
tistical measures and techniques. We measured the benchmark
variability with the coefficient of variation (CV). For slowdown
detection we relied on Wilcoxon rank-sum with effect sizes and
bootstrapped confidence intervals of the mean, which are both
state-of-the-art techniques for performance analysis. With the in-
creased numbers of samples across multiple levels of repetition, we
found that result variability of the studied benchmark environment
combinations varies drastically from 0.03% to 100.68%. This find-
ing is in-line with the previous results. Interestingly though, AWS
appears to be much stabler than Azure and GCE, and even on-par
with the bare-metal environment. With regards to the detectable
slowdowns, when executing test and control group on the same
instances, slowdowns below 10% are detectable most of the time.
Testing for performance changes with Wilcoxon rank-sum (with
effect sizes) is superior compared to confidence intervals when
dealing with results from unreliable environments.

These findings show that relatively small slowdowns are de-
tectable in cloud environments when test and control group are
executed on the same cloud instance and repeated multiple times
within and across cloud instances. With the goal of including SMB
executions into CI, these results support the thesis statement and
empirically validate that utilizing cloud environments is indeed
feasible.

5 RQ 3: REDUCING BENCHMARK
EXECUTION TIME

SMBs are different from unit tests, e.g., they test the “usual” path
of a program rather then the exceptional, are highly parameterized
which results in multiple SMBs having the same call path, and
have a result distribution compared to a binary outcome. Research
has focused on whether a commit should be performance tested at
all [13, 28], or it employed performance impact prediction as a driver
for prioritization and selection [5, 23]. It is unclear though how
traditional TCP/RTS techniques perform for SMBs and whether
performance impact is the only important goal to optimize for.

In this part, I will answer RQ 3 and address the problems of ex-
cessive runtimes and unreliable results, by empirically studying the
applicability of TCP/RTS techniques for SMBs and devising novel
approaches to prioritize/select SMBs that test the most important
features first and have better result quality.

5.1 RQ 3a: Importance-Based Benchmark
Prioritization

Importance-based benchmark prioritization considers the “impor-
tance” of a benchmark for its rank and consequently whether it
gets selected for execution. A benchmark has higher importance if
it directly or indirectly calls API features that are more often used
by other programs. The benchmarks that are prioritized to be run
after a software change (e.g., after a new commit) depend on two
main factors: (1) whether a benchmark is affected by a source code
change and (2) the importance of the functions the benchmark calls.

A benchmark is affected if it directly or indirectly calls a part of
the software that has been changed. Secondly, the importance of a
benchmark can be defined in various ways. The above mentioned

papers consider the predicted performance change impact as the
importance criteria. I propose a different strategy that assumes
importance of an API method is defined by the amount of API
consumers (other projects) using the software being developed
(and which is performance tested), i.e., a slowdown introduced in a
method that is most-used has higher severity because it potentially
slows down more consumers than a method which is hardly used.
For this, I will extract fine-grained API usages of the benchmark
projects employing the approach by Sawant and Bacchelli [29] and
assign weights to benchmarks based on the importance of the called
methods. Bringing the two aspects together, the importance-based
benchmark prioritization ranks the most important benchmarks,
defined by whether they are affected by a change and their impact
on API consumer software.

5.2 RQ 3b: Result-Quality-Aware Benchmark
Prioritization

With the same goal in mind as above — reducing the time spent
in performance testing activities — I want to shift the focus in this
part to SMB result quality as a driver for prioritization. The result
quality is defined as the variability of a benchmark executed in a
particular environment (as reported by the paper from Section 4).
SMB results with low variability lend themselves better to detect
performance changes than highly variable results. Hence, I plan on
devising a technique that incorporates benchmark properties that
relate to higher result quality into the prioritization of benchmarks,
i.e., favoring benchmarks that are better at finding performance
changes for a particular software change and executed in a defined
environment (e.g., cloud).

I plan on investigating the following properties that could drive
the prioritization for ranking benchmarks of higher quality with
respect to performance change detection capabilities: (1) variabil-
ity of benchmarks in a particular environment (e.g., coefficient of
variation or confidence interval widths); (2) historical performance
detection rate and sizes of benchmarks; (3) source code properties
and changes that are related to unreliable benchmark results (e.g.,
IO operations and concurrency); (4) predicted performance profile
based on system level benchmarks [33]. Because of the complex
parameter space, I plan to define the benchmark prioritization prob-
lem as a multi-objective search-based problem that incorporates
these parameters.

5.3 RQ 3: Evaluation
The evaluation of both prioritization approaches will use prototyp-
ing and case study evaluations based on multiple OSS projects,
where I will compare the importance-based and result-quality-
aware prioritizations to a number of baseline approaches, i.e., tra-
ditional TCP techniques. The planned evaluation will take the fol-
lowing steps: (1) Select a set of OSS projects available on GitHub
with long-running SMB suites. (2) Execute test suites for multiple
adjacent commits/version and detect performance change sizes
(based on bootstrapped confidence intervals of the mean ratios) in a
bare-metal and cloud (only for RQ 3b) environment . These provide
an ordering of importance based on slowdown sizes between all ver-
sion pairs. (3) Prioritize/select benchmarks with the two approaches.
(4) Compare this research’s prioritization approaches to traditional
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TCP techniques (e.g., total and additional approaches) with stan-
dard metrics such as APFD-P and nDCG [23] as well as adaptions
of these that assess the rankings with respect to the importance
(RQ 3a) and result quality (RQ 3b).

6 RQ 4: HIGH-VELOCITY SOFTWARE
MICROBENCHMARKING IN CONTINUOUS
INTEGRATION

In the final part of my PhD, I want to conduct a holistic evaluation
of the approaches and techniques introduced for RQ 1, RQ 2, and
RQ 3. The goal of this evaluation and therefore the answer to RQ 4
is to examine whether my techniques enable CI integration of
SMBs with software changes arriving at high velocity. In particular,
the evaluation should quantify the frequency with which we can
execute SMBs and the gain of detecting performance problems on
every commit rather than on every new software release. For this,
I want to build a CI plug-in which enables continuous performance
assessment, deployment of tests in different environments (i.e., bare-
metal, virtualized, and cloud), and prioritization/selection of tests
to be run on every commit.

I will conduct a large-scale quantitative empirical evaluation of
the simulated histories (e.g., a year) of multiple case study subjects
to show the benefits of including SMBs in CI. Moreover, I will
perform a sensitivity analysis on the available time budgets for
performance testing.

7 RELATEDWORK
Work related to this research evolves around performance testing,
performance measurements, and test prioritization and selection.

Performance Testing: Performance testing has traditionally
received research attention in form of system testing such as load
and stress testing [14, 34], with more recent research focusing on
industrial applicability [8] and reducing the execution time [1, 10].
Academic studies on software microbenchmarking, the unit test
equivalent for performance testing, have not received as much
attention as studies on load testing, though Stefan et al. [30] and
Leitner and Bezemer [19] quantitatively and qualitatively studied
microbenchmarking practices in Java OSS recently. Stefan et al.
[30] considered projects with benchmark suite runtimes of below 4
hour in their subject selection, which they justify because longer
runtimes are not feasible for continuous testing. As the results from
Section 3 show, there are projects with longer runtimes that require
solutions for continuous performance assessment.

PerformanceMeasurements:Measuring software performance
correctly, applying the necessary statistical analyses, and dealing
with measurement bias has been studied extensively. This is a hard
task to get right and much can be done wrong, especially if unreli-
able environments such as cloud instances are utilized. Mytkowicz
et al. [24] study different measurement biases and show that many
researchers have drawnwrong conclusions because of that. Georges
et al. [9] and Kalibera and Jones [16] outline approaches and statis-
tical techniques to rigorously assess the performance of software
systems. Nevertheless, all of these studies expect an as-stable-as-
possible environment to run performance experiments on. More
recently, Arif et al. [2] studied the effect of virtual environments
on load tests, showing a discrepancy between physical and virtual

environments, and Wang et al. [33] proposed an approach to as-
sess whether running performance tests in the cloud meets certain
goals.

So far and to the best of my knowledge, no one has studied exist-
ing SMBs and their results when executed in cloud environments.
In Section 4 and to a lesser degree in Section 3, we investigated
result variability, statistical techniques that lend themselves best to
slowdown detection, and the magnitude of detectable slowdowns.

Test Prioritization and Selection: Applying test case prioriti-
zation (TCP) and regression test selection (RTS) is a way to reduce
the time spent in performance testing activities and consequently
bringing it to CI. TCP and RTS techniques for unit testing has been
widely researched since the turn of the 21st century [6, 27]. Es-
pecially in contexts where high code velocity is key, approaches
that are time-aware [32, 35] and consider CI [7, 20] have received
increased attention in recent years. The approaches outlined in
Sections 5 and 6 can particularly draw inspiration from these.

Performance test regression selection and prioritization research
so far explored testing only performance-critical commits [13],
or focused on particular types such as collection-intensive soft-
ware [23] and concurrent classes [25]. De Oliveira et al. [5] propose
selection of individual benchmarks based on static and dynamic
data that assess whether a code change affects the performance of
each benchmark. In my research, I want to explore other properties
that are essential in performance test prioritization and selection
such as importance and and result quality.

8 CONCLUSIONS AND RESEARCH PROGRESS
The goal of my PhD is to devise techniques and gather empirical
evidence that support bringing software microbenchmarking to CI.
Especially, I want to tackle the problems of excessive benchmark
execution times and unreliable results. This, therefore, enables
detecting performance problems for every new software version
(i.e., commit) already at build time.

The contributions of my research are: (1) An approach to assess
the quality of an existing SMB suite and their feasibility for CI
inclusion in a certain environment, which is published at the 15th
International Conference on Mining Software Repositories [17].
(2) Empirical evidence on result variability, false-alarm-rate, and
detectable slowdowns of SMB executions in different cloud and bare-
metal environments, which has been published in Empirical Soft-
ware Engineering [18]. (3) Two prioritization/selection approaches
with proof-of-concept implementations to reduce performance test
execution time. (4) Empirical evidence about the inclusion of real-
world SMB suites in CI. Particular focus is put on the temporal
frequency, i.e., how often we can execute performance tests in high-
code-velocity environments, and what we gain in terms of earlier
detection of performance degradation.
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