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ABSTRACT
Executing software microbenchmarks, a form of small-scale perfor-
mance tests predominantly used for libraries and frameworks, is a
costly endeavor. Full benchmark suites take up to multiple hours
or days to execute, rendering frequent checks, e.g., as part of con-
tinuous integration (CI), infeasible. However, altering benchmark
configurations to reduce execution time without considering the
impact on result quality can lead to benchmark results that are not
representative of the software’s true performance.

We propose the first technique to dynamically stop software mi-
crobenchmark executions when their results are sufficiently stable.
Our approach implements three statistical stoppage criteria and
is capable of reducing Java Microbenchmark Harness (JMH) suite
execution times by 48.4% to 86.0%. At the same time it retains the
same result quality for 78.8% to 87.6% of the benchmarks, compared
to executing the suite for the default duration.

The proposed approach does not require developers to manually
craft custom benchmark configurations; instead, it provides auto-
mated mechanisms for dynamic reconfiguration. Hence, making
dynamic reconfiguration highly effective and efficient, potentially
paving the way to inclusion of JMH microbenchmarks in CI.

CCS CONCEPTS
•General and reference→Measurement;Performance; • Soft-
ware and its engineering→ Software performance; Software
testing and debugging.
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1 INTRODUCTION
Performance testing enables automated assessment of software per-
formance in the hope of catching degradations, such as slowdowns,
in a timely manner. A variety of techniques exist, spanning from
system-scale (e.g., load testing) to method or statement level, such
as software microbenchmarking. For functional testing, CI has been
a revelation, where (unit) tests are regularly executed to detect func-
tional regressions as early as possible [22]. However, performance
testing is not yet standard CI practice, although there would be a
need for it [6, 36]. A major reason for not running performance tests
on every commit is their long runtimes, often consuming multiple
hours to days [24, 26, 32].

To lower the time spent in performance testing activities, previ-
ous research applied techniques to select which commits to test [24,
45] or which tests to run [3, 14], to prioritize tests that are more
likely to expose slowdowns [39], and to stop load tests once they
become repetitive [1, 2] or do not improve result accuracy [20].
However, none of these approaches are tailored to and consider
characteristics of software microbenchmarks and enable running
full benchmark suites, reduce the overall runtime, while still main-
taining the same result quality.

In this paper, we present the first approach to dynamically, i.e.,
during execution, decide when to stop the execution of software
microbenchmarks. Our approach —dynamic reconfiguration— de-
termines at different checkpoints whether a benchmark execution
is stable and if more executions are unlikely to improve the result
accuracy. It builds on the concepts introduced by He et al. [20],
applies them to software microbenchmarks, and generalizes the
approach for any kind of stoppage criteria.

To evaluate whether dynamic reconfiguration enables reducing
execution time without sacrificing quality, we perform an experi-
mental evaluation on ten Java open-source software (OSS) projects
with benchmark suite sizes between 16 and 995 individual bench-
marks, ranging from 4.31 to 191.81 hours. Our empirical evaluation
comprises of three different stoppage criteria, including the one
from He et al. [20]. It assesses whether benchmarks executed with
dynamic reconfiguration in controlled, bare-metal environments

https://doi.org/10.1145/3368089.3409683
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(1) maintain their result quality and (2) have shorter execution times,
compared to being executed with the default JMH configuration.

We find that for the majority of studied benchmarks the result
quality remains the same after applying our approach. Depending
on the stoppage criteria, between 78.8% and 87.6% of the bench-
marks do not produce different results, with an average performance
change rate between 1.4% and 3.1%. Even though computation of
the stoppage criteria introduces an overhead between <1% and
~11%, dynamic reconfiguration still enables saving a total of 66.2%
to 82% of the execution time across all projects. For individual
projects, benchmark suites take 48.4% to 86.0% less time to execute.
Our empirical results support that dynamic reconfiguration of soft-
ware microbenchmarks is highly effective and efficient in reducing
execution time without sacrificing result quality.

Contributions. The main contributions of our study are:
• We present the first approach to dynamically stop the ex-
ecution of software microbenchmark using three different
stoppage criteria.
• We provide empirical evidence that demonstrates the effec-
tiveness and efficiency of dynamic reconfiguration for ten
OSS applications.
• We provide a fork of JMH that implements our approach on
Github [34] and as part of our replication package [35].
• To investigate whether real-world benchmark suites could
benefit from our approach to save time, we collect the largest
data set of JMHOSS projects (753 projects with 13,387 bench-
marks) including extracted source code properties such as
benchmark configurations and parameters.

2 JAVA MICROBENCHMARK HARNESS (JMH)
JMH1 is the de-facto standard framework for writing and executing
software microbenchmarks (in the following simply called bench-
marks) for Java. Benchmarks operate on the same level of granu-
larity as unit tests, i.e., statement/method level, and are similarly
defined in code and configured through annotations. Different from
unit tests where the outcome is binary, i.e., a test passes or fails
(disregarding flakiness), benchmarks produce outputs for a cer-
tain performance metric, such as execution time or throughput.
As these performance metrics are easily affected by confounding
factors, such as the computer’s hardware and software, background
process, or even temperature, one must execute benchmarks re-
peatedly to obtain rigorous results that are representative of the
software’s true performance [18].

Figure 1 depicts a standard execution of a JMH benchmark suite
B, where benchmarks b are sequentially scheduled. Every bench-
mark execution starts with a number of warmup forksw f , to bring
the system into a steady state, whose results are discarded. A fork is
JMH parlance for running a set of measurements in a fresh Java Vir-
tual Machine (JVM). The warmup forks are followed by a number
of measurement forks f (often simply called forks). Due to dynamic
compilation, every fork is brought into steady state by running a
series of warmup iterationswi , after which a series of measurement
iterationsmi are executed. An iteration has a specific duration –
wt ormt for warmup time and measurement time, respectively–

1https://openjdk.java.net/projects/code-tools/jmh (incl. source code examples)
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Figure 1: JMH Execution

for which the benchmark is executed as often as possible, and the
performance metrics for a sample of the invocations is reported.
Performance metrics from warmup iterations are discarded, and
the union of the measurement iterations across all forks form the
benchmark’s result. All these values can be configured by the de-
veloper through JMH annotations or the command line interface
(CLI), otherwise default values are used.

JMH supports benchmark fixtures, i.e., setup and teardown meth-
ods, as well as parameterization of benchmarks. A parameterized
benchmark has a number of parameters with (potentially) multiple
values; JMH then runs the benchmark once for every parameter
combination, which are formed as the cartesian product of the
individual parameters.

JMH uses different sets of default configuration values, depend-
ing on the version: ≤ 1.20 and ≥ 1.21. Versions until 1.20 use 10
forks (f ) running 40 iterations (20wi andmi each) with an iteration
time (wt andmt ) of 1s; starting from 1.21, defaults are 5 forks (f ),
5 iterations (bothwi andmi), and 10s iteration time (bothwt and
mt ) [47, 48]. JMH does not use warmup forks (w f ) by default.

Consequently, and as Fig. 1 depicts, we can define the overall
warmup time as tbw = w f ∗ (wi ∗wt +mi ∗mt ) + f ∗wi ∗wt , the
overall measurement time as tbm = f ∗mi ∗mt , and the benchmark
execution time as tb = tbw + t

b
m + t

b
f ix , where t

b
f ix is the time spent

in benchmark fixtures. Finally, the full microbenchmark suite exe-
cution timeT is the sum of all benchmark parameter combinations,
defined as T =

∑
b ∈B
∑
p∈Pb t

bp , where Pb the set of parameter
combinations for a benchmark b. These definitions will be used in
the remainder of the paper.

3 PRE-STUDY
Tomotivate ourwork, we conduct a pre-study investigatingwhether
benchmark execution times are in fact a problem in real-world OSS
projects using JMH.

3.1 Data Collection
We create, to the best of our knowledge, the most extensive OSS
JMH data set to date from Github, by querying and combining

https://openjdk.java.net/projects/code-tools/jmh
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three sources: (1) Google BigQuery’s most recent Github snap-
shot2, queried for org.openjdk.jmh import statements [12, 32];
(2) Github’s search application programming interface (API) with
an approach as outlined by Stefan et al. [49]; and (3) Maven Central
searching for projects with JMH as dependency. Our final dataset
consists of 753 pre-study subjects after removing duplicate entries,
repositories that do not exist anymore, projects without bench-
marks in the most recent commit, and forked projects.

For each project, we apply the tool bencher [30] to construct
abstract syntax trees (ASTs) for Java source-code files and extract
information related to (1) execution configuration (@Fork, @Warmup,
@Measurement, and @BenchmarkMode) and (2) benchmark param-
eterization (@Param). In addition, (3) we extract the JMH version
from the build script (Maven and gradle).

3.2 Summary of Pre-Study Subjects
The 753 projects have in total 13,387 benchmarkmethods and 48,107
parameter combinations. 400 (53.1%) projects feature fewer than 10
benchmarks, and 52 (6.9%) projects contain 50 benchmarks or more.
On average, a project has 19.7±44.9 benchmarks, with a median of
7. The project with the largest benchmark suite is eclipse/eclipse-
collections with 515 benchmarks.

Benchmark parameterization is quite common with projects hav-
ing, on average, 70.6±303.3 parameterized benchmarks, with a me-
dian of 9. 76.9% of the benchmarks have 10 parameter combinations
or fewer. We find the largest number of parameter combinations
in the project msteindorfer/criterion, with 4,132 combinations; and
the project with the the most parameter combinations for a single
benchmark is apache/hive, which contains an individual bench-
mark3 with an astounding 2,304 different combinations. However,
the majority of the benchmarks are not parameterized, i.e., 10,394
(77.6%).

Extracting the JMH version is crucial for our analysis, as the
default values of the execution configurations have been changed
with version 1.21 (see also Section 2). However, automatically
extracting the JMH version is not possible for each project. We
are able to successfully extract the JMH version from build scripts
for 573 (76%) of our pre-study subjects, containing 10,816 (80.8%)
benchmarks. About 20% of the projects (containing 4,115 (38.0%)
benchmarks) already use the most recent JMH version.

3.3 Results
We use this data to analyze how much time benchmark suites in
the wild take to execute. Figure 2a depicts a summary of bench-
mark suite execution times T for the 573 studied projects where
JMH version extraction was successful. The runtimes vary greatly,
ranging from 143 milliseconds for protobufel/protobuf-el to no less
than 7.4 years for kiegroup/kie-benchmarks (clearly, this project
does not intend to execute all benchmarks at once), with a median
of 26.7 minutes. 364 (49%) benchmark suites run for an hour or less,
which is probably acceptable, even in CI environments. However,
110 (15%) suites take longer than 3 hours, with 22 projects (3%)

2https://console.cloud.google.com/bigquery?project=fh-bigquery&page=
dataset&d=github_extracts&p=fh-bigquery

3VectorGroupByOperatorBench.testAggCount
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Figure 2: Impact of custom configurations on the execution
times of (a) benchmark suites and (b) benchmarks.

exceeding 12 hours runtime. For example, the popular collections li-
brary eclipse/eclipse-collections has a total benchmark suite runtime
of over 16 days, executing 515 benchmarks with 2,575 parameter
combinations. We conclude that at least 15% of the pre-study sub-
jects would greatly benefit from an approach to reduce benchmark
execution times given their current configuration.

The benchmark suite execution time is based on the extracted
JMH configurations from the projects. We speculate that devel-
opers specifically apply custom configurations to reduce the de-
fault settings of JMH. Indeed, 4,836 (36%) benchmarks have a con-
figuration change that affects its runtime, of which 4,576 (34%)
have a decreased benchmark time tb with respect to JMH de-
faults (see Fig. 2b). We observe that for the majority of the bench-
marks the execution time is in fact drastically reduced: for 3,735
(28%) and 2,379 (18%) by a factor ≥ 5 and ≥ 10, respectively. Still
374 (3%) benchmarks are reduced by a factor ≥ 50. While only a
minority of 250 (2%) of the benchmarks belonging to just 17 (3.0%)
of projects are configured to increase execution time compared to
the defaults.

Pre-Study Summary. OSS developers extensively customize
benchmark configurations, often setting their values consider-
ably lower than the JMH default. Despite these changes, 15% of
the projects still have a benchmark suite execution time of over 3
hours. These findings indicate that developers of many projects
could be supported by a data-driven way to reduce the execution
time of JMH benchmarks.

4 DYNAMIC RECONFIGURATION
In Section 3, we found that real-world OSS benchmark suites of-
ten are configured to considerably reduce runtime, with respect to
JMH’s defaults; still many run for multiple hours, making it effec-
tively impossible to assess performance on every software change.
We hypothesize that this time reduction is an effort by developers
to keep benchmark suite runtimes reasonable without confirming
that benchmark results remain stable (accurate).

This section introduces an approach to dynamically stop bench-
marks when their result is stable, with the goal of saving execution
time without sacrificing quality.

https://console.cloud.google.com/bigquery?project=fh-bigquery&page=dataset&d=github_extracts&p=fh-bigquery
https://console.cloud.google.com/bigquery?project=fh-bigquery&page=dataset&d=github_extracts&p=fh-bigquery
https://github.com/apache/hive/blob/rel/release-3.1.2/itests/hive-jmh/src/main/java/org/apache/hive/benchmark/vectorization/operators/VectorGroupByOperatorBench.java
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Figure 3: Standard JMH execution with static configuration
vs. dynamic reconfiguration approach. A yellow box is a
warmup iteration, a blue box is a measurement iteration,
and a dashed box is a skipped iteration. A solid line indi-
cates that the stoppage criterion is met, and a dashed line
indicates the opposite.

4.1 Approach
JMH allows developers to define benchmark configurations before
execution, either through annotations or CLI parameters, and then
executes all benchmarks according to this configuration (see Sec-
tion 2). We call this the “static configuration” of a benchmark exe-
cution. Figure 3a shows the static configuration where every row
indicates a JMH fork (f1–f5) and every column/rectangle an itera-
tion (i1–i20) of the corresponding fork. Yellow rectangles (i1–i10)
indicate warmup iterations, and blue rectangles (i11–i20) indicate
measurement iterations. This static configuration bears the problem
that all forks are executed with the same configuration, irrespective
of the accuracy of the results, potentially wasting precious runtime.

In order to stop benchmark executions when their result is ac-
curate enough, we propose dynamic benchmark reconfiguration,
i.e., an approach that dynamically decides, at certain checkpoints,
when the benchmark results are unlikely to change with more
executions. This happens at two points: (1) within a fork, when
the execution reaches a steady state, i.e., the warmup phase was
executed long enough, and (2) after a fork’s execution, when it is
unlikely that more forks will lead to different results. Figure 3b
illustrates dynamic reconfiguration. Vertical bars indicate check-
points after iterations (line 7), horizontal bars indicate checkpoints
after forks (line 10), and white, dashed boxes represent iterations
that are skipped.

Algorithm 1 depicts the pseudo code for our dynamic reconfigu-
ration approach. The algorithm takes the benchmark b to execute,
its extended JMH execution configuration Cb , a stability function
stable that is executed at every checkpoint, and a threshold t for
deciding what is considered stable.Cb is a tuple of configuration val-
ues defined as Cb = ⟨wimin ,wimax ,mi, fmin , fmax ,w f ,wt ,mt⟩
(see also Section 2). Note that checkpoints only happen after i5 and

Algorithm 1: Dynamic reconfiguration algorithm
Input : b ∈ B : the benchmark to execute

Cb = ⟨wimin, wimax ,mi, f min, f max , · · · ⟩: execution
configuration for b

stable : M ×T 7→ {true, f alse }: stability function at thresh-
old t ∈ T for a set of measurements M ′ ∈ M

t : stability threshold (specific for stable )
Data: execute : B 7→ M : executes a benchmark iteration
Result:Measurements Mb of the benchmark b

1 begin
2 Mb ← ∅

3 for f ← 1 to f max do
4 Mw ← ∅

// dynamic warmup phase

5 forwi ← 1 towimax do
6 Mw ← Mw ∪ execute(b, Cb)

// warmup stoppage

7 if wi ≥ wimin ∧ stable(Mw , t) then break

// measurement phase

8 for 1 tomi do
9 Mb ← Mb ∪ execute(b, Cb)

// fork stoppage

10 if f ≥ f min ∧ stable(Mb , t) then break

11 return Mb

f2 in the example, defined as wimin and fmin . If a benchmark is
not stable at a checkpoint, the bar is dashed (solid otherwise) and
the warmup phase continues or another fork is spawned.

To circumvent the situation where a benchmark’s warmup phase
never reaches a steady state or the overall measurements are never
accurate enough, our approach takes amaximumnumber ofwarmup
iterations (wimax ) and forks (fmax ), e.g., f3 has a dashed bar after
the last warmup iteration. This guarantees that a single benchmark
execution never exceeds a configurable time budget, which defaults
to JMH’s warmup iterations (wi) and forks (f ).

Benchmarks often exhibit multiple steady states resulting in
multi-modal distributions, and outliers, due to non-deterministic
behavior, might still occur even after stable considered a fork to
be in a steady state [19]. Therefore, our approach uses a fixed
number of multiple measurement iterations mi (lines 8–9), as a
single measurement iteration would not accurately represent a
fork’s performance.

4.2 Stoppage Criteria
To decide whether a fork reached a steady state (line 7) or the gath-
eredmeasurements are stable (line 10), our approach needs to decide
whether more measurements provide significantly more accurate
results. For this, we rely on statistical procedures on the perfor-
mance measurement distributions. That is, if more measurements
(i.e., data points) are unlikely to change the result distribution, we
consider the measurement stable. There are three key aspects to
consider: (1) a stability criteria sc : M 7→ R+ that assigns a stability
value s ∈ R to a set of measurements M ′ ∈ M ; (2) a threshold
t ∈ T that indicates whether a stability value s is considered stable;
and (3) a stability function stable : M × T 7→ {true, f alse} that,
based on a set of stability values (extracted from a set of measure-
ments M ′ ∈ M) and a threshold t ∈ T , decides whether a set of
performance measurements is stable or not.
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4.2.1 Stopping Warmup Phase. The first stoppage point (line 7)
decides whether a fork is in a steady state, which indicates the end
of the warmup phase and the start of the measurement phase. For
this, the dynamic reconfiguration approach uses a sliding-window
technique where the measurement distributions at the last itera-
tions are compared along a stability criteria. Let us consider the set
of warmup measurementsMw (across multiple warmup iterations)
such thatmi ∈ Mw is the measurement at the ith iteration. We then
define the sliding-window warmup vectorWi′′ after a current itera-
tion i ′′, a sliding-window size sW , and the resulting start iteration
of the window i ′ = i ′′ − sW : i ′ ≥ 1 in Eq. (1).

Wi′′ =
〈
sc
( x⋃
i=i′

mi
) ��� i ′ ≤ x ≤ i ′′

〉
(1)

4.2.2 Stopping Forks. The second stoppage point (line 10) decides
whether the benchmark measurement resultsMb are sufficiently
stable and no additional fork needs to be spawned, therefore stop-
ping the execution of benchmark b. Let us consider the set of mea-
surements Mb (across multiple forks) such that Mb

f ⊆ Mb is the
subset of measurements at fork number f . We then define the fork
vector Ff ′′ after a current fork f ′′ in Eq. (2).

Ff ′′ =
〈
sc
( x⋃
f =1

Mb
f

) ��� 1 ≤ x ≤ f ′′
〉

(2)

4.2.3 Stability Criteria and Function. The dynamic reconfiguration
approach allows for different stability criteria (sc) and functions
(stable), and we identified and evaluated three:
Coefficient of variation (CV): coefficient of variation (CV) is a
measure of variability under the assumption that the distribu-
tion is normal. However, performance distributions are usually
non-normal, e.g., multi-modal or long-tailed [11, 37]. As a sta-
bility criteria sc , CV might still be a “good enough” proxy to
estimate a benchmark’s stability, especially due to its low com-
putational overhead. Depending on the benchmark, the stability
values in the vector v ∈ {Wi′′ , Ff ′′ } converge towards different
values, making a global threshold t for all benchmarks unrealis-
tic. Instead, we compare all stability values from v such that the
delta between the largest and the smallest is at most t . Formally,
stablevar (M ′, t ) = true ⇐⇒ max (v ) −min(v ) ≤ t .

Relative confidence interval width (RCIW): The second stabil-
ity criteria sc —relative confidence interval width (RCIW)— is
similar to CV, as it estimates a benchmark’s variability, hence
stablevar also applies here. Different from CV, we employ a tech-
nique based on Monte Carlo simulation called bootstrap [13, 21]
to estimate the RCIW for the mean. For this, we utilize the tool
pa [31] that implements a technique by Kalibera and Jones [27].
It uses hierarchical random resampling [43] with replacement,
which is tailored to performance evaluation. The hierarchical
levels are (1) invocations, (2) iterations, and (3) forks (we refer to
pa [31] and Kalibera and Jones [27] for details).

Kullback-Leibler divergence (KLD): The third stability criteria
sc uses a technique outlined by He et al. [20] that constructs a
probability that two distributions d1 and d2 are similar based
on the Kullback-Leibler divergence (KLD) [29]. sc computes this

probability (for every element of the vectorv) whered1 is themea-
surement distribution excluding the last measurement (warmup
iteration i or fork f ) and d2 is the measurement distribution in-
cluding the last measurement. Consequently and different from a
variability-based stability criteria, the vector v consists of prob-
abilities rather than variabilities. The stability function stable
checkswhether themean probability of the stability values fromv

are above the threshold t . Formally, stableprob (M ′, t ) = true ⇐⇒
mean(v ) > t .

4.3 Modified JMH Implementation
We implemented the dynamic reconfiguration approach with the
three stoppage criteria for JMH version 1.21, by adding a recon-
figuration benchmark mode with stoppage criteria (sc and stable)
and threshold (t ) properties, annotation properties forwimin and
fmin , and corresponding CLI flags. Additionally, we adapted JMH’s
console and JavaScript Object Notation (JSON) result file output to
include the new configuration options and added a warning if the
stability criterion has not been met for a benchmark. The modified
fork of JMH is available on Github [34] and part of our replication
package [35].

5 EMPIRICAL EVALUATION
To assess whether dynamic reconfiguration is effective and efficient,
we conduct an experimental evaluation on a subset of the Java OSS
projects identified in our pre-study (see Section 2). Our evaluation
compares three dynamic reconfiguration approaches (one for every
stoppage criterion). As a baseline for comparison, we use standard
JMH with static configuration and the default values.

To support open science, we provide all evaluation data and
scripts in a replication package [35].

5.1 Research Questions
First, we want to ensure that dynamic reconfiguration does not
change the results compared to static configuration. If the results
of the same benchmark executed with static configuration and
with dynamic reconfiguration are equal, we conclude that dynamic
reconfiguration is effective in preserving result quality. For this, we
formulate RQ 1:
RQ 1 How does dynamic reconfiguration of software microbench-

marks affect their execution result?
Second, wewant to evaluate if dynamic reconfiguration improves

the overall runtime of a benchmark suite, compared to static con-
figuration, including the overhead imposed by the stoppage criteria
computation. For this, we formulate RQ 2:
RQ 2 How much time can be saved by dynamically reconfiguring

software microbenchmarks?
As a benchmark’s result quality (accuracy) and runtime are com-

peting objectives, the combination of the results from RQ 1 and
RQ 2 validates whether dynamic reconfiguration enables “reducing
execution time without sacrificing result quality”.

5.2 Study Subjects
Evaluating the dynamic reconfiguration approach on all 753 pre-
study subjects (see Section 3) is infeasible as executing benchmark
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Table 1: Selected study subjects. All projects are hosted on Github except the ones indicated

Name Project Version # Benchs.1 # Param.
Benchs.1

Exec.
Time Domain

byte-buddy raphw/byte-buddy c24319a 39 39 5.42h Bytecode manipulation
JCTools JCTools/JCTools 19cbaae 60 148 20.56h Concurrent data structures
jdk jmh-jdk-microbenchmarks2 d0fab23 994 1,381 191.81h Benchmarks of the JDK
jenetics jenetics/jenetics 002f969 40 40 5.56h Genetic algorithms
jmh-core jmh-core-benchmarks3 a07e914 110 110 15.28h Benchmarks of JMH
log4j2 apache/logging-log4j2 ac121e2 358 510 70.83h Logging
protostuff protostuff/protostuff 2865bb4 16 31 4.31h Serialization
RxJava ReactiveX/RxJava 17a8eef 217 1,282 178.06h Asynchronous programming
SquidLib SquidPony/SquidLib 055f041 269 367 50.97h Visualization
zipkin openzipkin/zipkin 43f633d 61 61 8.47h Distributed tracing
1 The numbers correspond to succeeding benchmarks and excludes 38 failing parameterizations. See our replication package for a list [35]
2 Repository: http://hg.openjdk.java.net/code-tools/jmh-jdk-microbenchmarks
3 Module directory in repository: https://hg.openjdk.java.net/code-tools/jmh

suites potentially takes a long time. Hence, we perform purposive
sampling [5] to select a subset of ten, non-trivial projects from a
wide variety of domains with small (16) to large (994) benchmark
suites. Our evaluation executes all 3,969 benchmark parameter
combinations of the ten study subjects, which are 8.2% of the 48,107
parameter combinations from the pre-study.

Table 1 lists the study subjects with their number of benchmarks
(“# Benchs.”) and benchmark parameter combinations (“# Param.
Benchs.”), git version used for the evaluation (“Version”), and exe-
cution time when using JMH default values (“Exec. Time”).

5.3 Study Setup
We execute all benchmarks, retrieve the benchmark results, and
afterwards apply dynamic reconfiguration and the stoppage cri-
teria to the obtained data set. This allows us to experiment with
thresholds and parameters without having to rerun the full bench-
mark suites with our modified JMH implementation (with dynamic
reconfiguration).

5.3.1 Execution and Data Gathering. As performance measure-
ments are prone to confounding factors [11, 15, 18, 37, 40], we
apply the subsequent steps to follow a rigorous methodology in
order to increase result reliability.

(1) All benchmark suites are patched with JMH 1.21.
(2) We compile and execute all benchmarkswithAdoptOpenJDK

and JavaHotSpot virtualmachine (VM) version 1.8.0_222-b10,
except log4j2 which requires a Java Development Kit (JDK)
version ≥ 9, hence we employ version 13+33.

(3) We run the benchmarks on a bare-metal machine [4, 46]
with a 12-core Intel Xeon X5670 @2.93GHz CPU, 70 GiB
memory, and a Samsung SSD 860 PRO SATA III disk, running
ArchLinux with a kernel version 5.2.9-1-1-ARCH.

(4) All non-mandatory background processes except ssh are
disabled, without explicitly disabling software/hardware op-
timizations.

(5) Regarding benchmark suite execution, we configure and exe-
cute all benchmarks with five forks f , 100 measurement iter-
ationsmi , 1s measurement timemt , and JMH’s samplemode,

set through JMH’s CLI. This configuration corresponds to the
JMH 1.21 defaults, onlymt changes from 10s to 1s but, at the
same time,mi increases by a factor of 10, which grants our
approach more checkpoints. Note that warmup iterations
wi are set to zero butmi is doubled (from 50 to 100), which
is required to obtain results for every iteration to dynami-
cally decide when to stop the warmup phase. The resulting
execution configuration is then Cb = ⟨0, 0, 100, 5, 5, 0, 0s, 1s⟩.

(6) We remove outliers that are a magnitude larger than the
median.

5.3.2 Approach. With the obtained performance results from the
suite executions, we evaluate dynamic reconfiguration with the
following configuration parameters. Recall the configuration defi-
nition Cb = ⟨wimin ,wimax ,mi, fmin , fmax ,w f ,wt ,mt⟩ (see Sec-
tion 4.1).

Static Configuration (Baseline). The baseline, i.e., JMH with static
configuration, uses the JMH 1.21 default configuration for all
benchmarks. For this, we remove from the gathered data the first
50 iterations (corresponding towi) from each fork and use the 50
remaining iterations asmi . Hence, the baseline has the following
configuration: Cb = ⟨50, 50, 50, 5, 5, 0, 1s, 1s⟩.

We consciously decided for the JMH default configuration as
baseline and against the developers’ custom benchmark configura-
tions for the following reasons: (1) 36% of the pre-study benchmarks
change the benchmark execution time through custom configu-
rations, hence, 64% of the benchmarks still use the JMH default
configuration; (2) the majority of these benchmarks (28% of all
pre-study benchmarks) only use a single fork f , which is consid-
ered bad practice as inter-JVM-variability is common [32], basically
invalidating developers’ custom configurations for rigorous bench-
marking; and (3) a unified benchmark configuration as the baseline
enables comparability across our study subjects.

Dynamic Reconfiguration. For the dynamic reconfiguration ap-
proaches, we employ the configurationCb = ⟨5, 50, 10, 2, 5, 0, 1s, 1s⟩
for all benchmarks, which changes the minimum warmup itera-
tions (wimin = 5) and minimum forks (fmin = 2) compared to the

http://hg.openjdk.java.net/code-tools/jmh-jdk-microbenchmarks
https://hg.openjdk.java.net/code-tools/jmh
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baseline. Note that we also reducemi to 10 instead of 50, which the
baseline uses. Initial experiments showed that an increase in mea-
surement iterations, after a steady state is reached, has only a minor
effect on result accuracy but with considerably longer runtimes.

We use the following parameters for the three dynamic recon-
figuration approaches (one per stoppage criterion).

(1) We draw aweighted sample of 1,000 invocations per iteration
to reduce computational overhead at checkpoints.

(2) The sliding-window size is set to sW = 5.
(3) CV uses a threshold t = 0.01, which corresponds to a maxi-

mum variability difference in the sliding window of 1%.
(4) RCIW uses a 99% confidence level, 1,000 bootstrap iterations

(which is a good tradeoff between runtime overhead and
estimation accuracy), and a threshold t = 0.03 following
best practice [18].

(5) KLD partitions the distributions d1 and d2 into 1,000 strips
for the KLD calculation [20]; removes outliers that are more
than 1.5 × IQR away from the median; and uses a threshold
t = 0.99, which corresponds to a mean probability within
the sliding window of 99% or larger. More strips would result
in longer calculation times for the kernel density estimation
and, consequently, in a higher runtime overhead. Without
the outlier removal, KLDwould not converge above the prob-
ability threshold t , and, hence, our approach would not stop
the benchmark execution. Note that the outlier removal is
only performed as part of the stoppage criteria calculation
of our approach; for the evaluation, we consider all measure-
ments and do not remove any outliers (see Section 5.4).

5.4 Results and Analysis
We now present the results of our empirical evaluation by compar-
ing the benchmark results of the static configuration to the ones of
our dynamic reconfiguration approaches with the three stoppage
criteria.

5.4.1 RQ 1: Result Quality. To assess whether applying dynamic
reconfiguration changes benchmark results and to answer RQ 1,
we perform two analyses between the execution results coming
from the baseline with static configuration and each of the three
dynamic reconfiguration approaches: (1) statistical A/A tests and
(2) mean performance change rate.

A/A Tests. An A/A test checks whether results from two distribu-
tions are not significantly different, where no difference is expected.
In our context, this means if an A/A test between static configu-
ration and dynamic reconfiguration (for each stoppage criterion)
does not report a difference, we conclude that dynamic reconfigura-
tion does not change the benchmark result. Following performance
engineering best practice [9, 10, 27, 33], we estimate the confidence
interval for the ratio of means with bootstrap [13], using 10,000 it-
erations [21], and employing hierarchical random resampling with
replacement on (1) invocation, (2) iteration, and (3) fork level [27]
(again relying on pa [31]). If the confidence interval (of the ratio)
straddles 1, there is no statistically significant difference. Note that
this procedure is different from the stoppage criteria RCIW (see Sec-
tion 4); here we compare the results (all measurement iterationsmi

Table 2: Result quality differences between static configura-
tion approach and dynamic reconfiguration approaches

CV RCIW KLD

A/A tests not different 78.8% 87.6% 79.6%

Mean change rate 3.1% ± 8.1% 1.4% ± 3.8% 2.4% ± 7.4%
# benchs < 1% 57.4% 73.2% 62.3%
# benchs < 2% 72.4% 87.0% 78.2%
# benchs < 3% 79.6% 91.9% 84.6%

from all forks f ) of two techniques, whereas RCIW uses confidence
interval widths as a variability measure of a single technique.

The first row of Table 2 shows the A/A results. For a majority of
the 3,969 benchmark parameter combinations, applying dynamic
reconfiguration does not result in significantly different distribu-
tions. About 80% or more of the benchmarks have similar result
distributions compared to the static configuration. RCIW achieves
the best result with 87.6%, while CV and KLD perform similarly well
with 78.8% and 79.6%, respectively. Note that the static approach
uses 50 measurement iterations (mi) while the dynamic approach
“only” runs 10, indicating that if a steady state is reached (which is
one goal of dynamic reconfiguration) more measurement iterations
have a negligible impact on the overall result.

Change Rate. In addition to A/A tests, we assess the performance
change rate between the static configuration approach and each
of the dynamic reconfiguration approaches, i.e., by how much the
means of the performance result distributions differ. The change
rate augments the A/A tests’ binary decision, by showing how
different the benchmark results become when applying dynamic
reconfiguration.

The second row of Table 2 shows the mean change rate across
all benchmarks in percent and its standard deviation. The mean
change rate between the three stoppage criteria and the static ap-
proach is ~3% or lower for all three. Note that, following a rigorous
measurement methodology, ~3% could still be caused by JVM in-
stabilities unrelated to our approach [19]. Again, RCIW is the best
criterion with 1.4%±3.8%. Finally, the last three rows show how
many benchmarks have a change rate below 1%, 2%, and 3% for all
stoppage criteria. We observe that RCIW outperforms the other
two significantly, followed by KLD. ~73% of the benchmarks have
a change rate below 1%, ~87% below 2%, and ~92% below 3%. This
suggests that RCIW is a highly effective technique for stopping
benchmark executions.

Figure 4 depicts the change rate distributions per project and
stoppage criterion, where every data point corresponds to a bench-
mark’s mean performance change. Considering the median change
rate of a project’s benchmarks, RCIW performs best for all projects
except jenetics, jmh-core, and SquidLib where KLD is slightly su-
perior. CV consistently has the largest change rates of the three
stoppage criteria; nonetheless, it performs only slightly worse in
most cases. Considering the mean change rate, RCIW is the most ac-
curate stoppage criteria for 9/10 projects, with only jmh-core being
more stable when KLD is employed. Note that for the projects where
RCIW is not the best stoppage criterion, both mean and median
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Figure 4: Mean change rate per study subject and stoppage
criteria. The bar indicates the median, the diamond the
mean, the box the IQR, and the whiskers [Q1 |Q3] + 1.5 ∗ IQR.

change rates are below 1%. The projects with the most diverging
benchmarks between static configuration and dynamic reconfig-
uration execution are byte-buddy, JCTools, log4j2, and SquidLib.
The benchmarks of these projects are less stable compared to the
other projects, likely due to executing non-deterministic behaviour
such as concurrency and input/output (I/O). Results from bench-
marks that are less stable will potentially have statistically different
distributions and, therefore, not maintain the same result quality.

Unreachble Stability Criteria. If the stability function stable never
evaluates the measurements after a warmup iteration or a fork as
stable, the maximum number of warmup iterations (wimax ) or forks
(fmax ) are executed. This corresponds to the static configuration
of JMH. We analyzed how often stability is not achieved according
to the three stoppage criteria across all study subjects. CV is the
most lenient criterion with only 1.0% of the benchmarks’ forks
not considered stable after 50 warmup iterations and 12% of the
benchmarks insufficiently accurate after five forks. KLD achieves
similar numbers (0.8%) for warmup iterations, however 46.4% of
the benchmarks were not considered stable after five forks. RCIW
is even more restrictive where 46.7% and 37.9% of the benchmarks
do not reach the stability criteria after wimax and fmax , respec-
tively. This restrictiveness impacts the A/A test and mean change
rate results, leading to benchmark results with higher quality. Not
reaching the stability criteria can either happen if the threshold t
is too restrictive or the benchmark is inherently variable, which is
a common phenomenon [32, 33].

RQ 1 Summary. Applying dynamic reconfiguration does not
change the result quality of the majority of the benchmarks, when
compared to the static configuration. The RCIW stoppage criteria
outperforms KLD and CV, with 87.6% of the benchmarks main-
taining their result quality and a mean performance change rate
of 1.4%.

5.4.2 RQ 2: Time Saving. Themain goal of dynamic reconfiguration
is to save time executing benchmark suites. For this, and to answer
RQ 2, we (1) measure the runtime overhead of the three stoppage
criteria, (2) estimate the time saving for all projects compared to the

static configuration, and (3) show at which checkpoint (warmup or
fork) more time can be saved.

Runtime Overhead. Tomeasure the runtime overhead of the three
stoppage criteria, we execute the benchmark suite of log4j2 once
with standard JMH 1.21 (i.e., static configuration) and once for
each stoppage criteria with our JMH fork implementing dynamic
reconfiguration. To ensure a valid comparison between the four
measurements (static configuration + dynamic reconfiguration of
three stoppage criteria), we use the same configuration for the static
and the dynamic approaches ofCb = ⟨5, 90, 10, 2, 5, 0, 1s, 1s⟩, but do
not stop at the stoppage checkpoints. We measure the end-to-end
execution time tb ′ of every benchmark b when executed through
JMH’s CLI. This time includes JVM startup, benchmark fixtures,
benchmark execution, and stoppage criteria computation, which is
negligible compared to the duration of the measurement. Note that
the number of data points used for the stoppage criteria calculation
is independent of the study subject by construction of JMH and our
approach; therefore it is sufficient to measure the overhead based
on one project (see a discussion on this in Section 7).

The overheads o ∈ O of all benchmarks for a stoppage criteria is
O =
⋃
b ∈B t

b ′
dyn/t

b ′
sta − 1, where t

b ′
dyn is the execution time of the

dynamic reconfiguration with a specific stoppage criteria, and tb ′sta
is the execution time of the static configuration. The overheads o
are independent of the number of iterations and forks executed,
because they are factors of the runtime difference between dynamic
reconfiguration with one stoppage criterion and the static configu-
ration (i.e., standard JMH), and all our overhead measurements use
the same configuration Cb .

The overheads we measure are oCV = 0.88% ± 0.34% for CV,
oRCIW = 10.92% ± 0.63% for RCIW, oK LD = 4.32% ± 0.65% for
KLD. Note that changing the iteration time of 1s and executing
benchmarks on different hardware might affect the overhead. The
considerable difference in overhead is explained by the complexity
of the stoppage criteria calculations.Whereas CV is computationally
cheap (it only needs to compute standard deviation, mean, and
their difference), RCIW is computationally intensive due to the
simulations required for bootstrap. Because there is hardly any
overhead variability (< 1%) among all benchmarks, we consider the
overhead constant and use the mean value for the remainder of the
experiments.

Time Saving Estimation. To estimate the overall time that can
be saved with dynamic reconfiguration, we adapt the execution
time equation tb (see Section 2) to incorporate the stoppage criteria.
The dynamic reconfiguration benchmark execution time is then
tbdyn =

∑
f ∈f orks [(1 + o) ∗wif ∗wt +mi ∗mt]. f orks corresponds

to the number of executed forks f of a benchmark according to
the stoppage criterion, wif to the number of warmup iterations
in this fork f , and the rest according to Cb from Section 4.1. For
simplicity and because of the low variability between benchmark
overheads, we disregard benchmark fixture times. The total bench-
mark suite execution time when using dynamic reconfiguration is
then Tdyn =

∑
b ∈B′ t

b
dyn , where B

′ is the set of benchmark param-
eter combinations.
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Table 3: Time saving per project and stoppage criteria

Project Time Saving

CV RCIW KLD

byte-buddy 4.42h (81.7%) 2.62h (48.4%) 4.22h (77.8%)
JCTools 17.42h (84.8%) 11.45h (55.7%) 17.13h (83.3%)
jdk 157.32h (82.0%) 135.57h (70.7%) 154.41h (80.5%)
jenetics 4.78h (86.0%) 3.37h (60.7%) 4.52h (81.4%)
jmh 12.76h (83.5%) 12.69h (83.1%) 12.42h (81.3%)
log4j2 54.56h (77.0%) 39.12h (55.2%) 55.96h (79.0%)
protostuff 3.43h (79.6%) 2.91h (67.7%) 3.44h (79.8%)
RxJava 147.91h (83.1%) 121.55h (68.3%) 138.68h (77.9%)
SquidLib 43.07h (84.5%) 30.70h (60.2%) 41.11h (80.7%)
zipkin 6.17h (72.8%) 4.93h (58.2%) 6.59h (77.8%)

Total 451.84h (82.0%) 364.92h (66.2%) 438.48h (79.5%)

Table 3 shows the time saving per project and stoppage criteria
in absolute numbers (hours) and relative to the static configuration.
We observe that dynamic reconfiguration with all three stoppage
criteria enables drastic time reductions compared to static config-
uration. In total, CV and KLD save ~80% and RCIW ~66% of the
benchmark suite execution times of all projects combined. For indi-
vidual projects, the time saving ranges between 72.8% and 86.0% for
CV, 48.4% and 83.1% for RCIW, and 77.8% and 83.3% for KLD. Even
with the computationally most expensive technique, i.e., RCIW, we
can save at least 48.4% of time. In total numbers, the savings are
between 3.43h and 157.32h for CV, 2.62h and 135.57h for RCIW,
and 3.44h and 154.41h for KLD.

Stoppage Criteria Checkpoints. Dynamic reconfiguration defines
two points during benchmark execution when to stop: (1) after the
warmup phase if measurements are stable within a fork and (2) af-
ter a fork if measurements across forks are stable. In our analysis,
the range of warmup iterations is from five (wimin ) to 50 (wimax ),
and forks are between two (fmin ) and five (fmax ) (see Cb in Sec-
tion 4.1). Although CV and KLD save a similar amount of time, they
have different stoppage behavior. Where CV requires more warmup
iterations (18.5±9.4) than KLD (14.1±6.9), the opposite is the case for
forks with 3.1±1.2 vs. 4.1±1.2, respectively. RCIW, which saves con-
siderably less time, demands more warmup iterations (34.6±16.6)
to consider a fork stable but lies between CV and KLD in terms
of forks (3.3±1.4). The reported numbers are arithmetic means (of
warmup iterations and forks) with standard deviations across all
benchmarks of all study subjects. Generally, warmup iterations
are more reduced than forks in our setup, indicating that fork-to-
fork variability is more present than within-fork variance, that is
variability across multiple JVMs compared to within a JVM, re-
spectively. Dynamic reconfiguration enables finding the sweet spot
between shortening warmup iterations and forks in combination
with a certain stoppage criteria.

RQ 2 Summary.With runtime overheads between <1% and ~11%,
dynamic reconfiguration enables reducing benchmark suite run-
times by 48.4% to 86.0% compared to JMH’s default runtime.

6 DISCUSSION AND RECOMMENDATIONS
Our pre-study (see Section 3) shows that developers often dras-
tically reduce benchmark execution times. We see two potential
reasons for this: (1) the benchmark suite runtimes are too long, and,
consequently, developers trade shorter runtimes for inaccurate re-
sults; or (2) JMH defaults are overly conservative, and benchmarks
with shorter runtimes often still produce results that are considered
sufficiently accurate. We hypothesize that the former is more likely,
but leave the developer perspective for configuration choices for
future work. In any case, the proposed dynamic reconfiguration ap-
proach enables reducing time while maintaining similar benchmark
results, as our empirical evaluation shows.

Recommendations for Developers. Developers are advised to ei-
ther assess their benchmark accuracies when executed in their
environment and adjust configurations accordingly, or employ dy-
namic reconfiguration which is able to adjust to different execution
environments. The choice of stoppage criteria depends on the re-
quired result quality and, therefore, the performance change sizes
desired to be detected. For slightly less accurate results but more
time reduction, we recommend using KLD, otherwise RCIW is
preferred. The exact threshold t depends on the stability of the
execution environments the benchmarks that are run in it. If a
controlled, bare-metal environment is available, we suggest the
thresholds of our study. In a virtualized or cloud environment, the
thresholds need to be adjusted (see also He et al. [20]). The effec-
tiveness of our technique in non-bare-metal environments, such
as in the cloud, is subject to future research. Moreover, whether
a combination of different stoppage criteria, e.g., stopping when
both KLD and RCIW deem a benchmark run to be stable, improves
result accuracy also requires further research. Such a combination
would, however, negatively affect the runtime overhead of dynamic
reconfiguration.

Microbenchmarks in CI. The long benchmark execution times
(see Section 3 and [24, 32, 45]) are a major obstacle for including
microbenchmarks in CI [6]. To overcome this hurdle, a combina-
tion of our technique with benchmark selection [14], benchmark
prioritization [39], and risk analysis on commits [24] would reduce
the required time for microbenchmarking and potentially enable CI
integration. Continuously assessing software performance would
increase confidence that a change does not degrade performance
and likely be beneficial for performance bug root cause analysis.

Choosing JMH Configuration Parameters. Choosing JMH configu-
ration parameters that keep execution time low and result accuracy
high is non-trivial, and developers decrease configurations drasti-
cally. Our results show the importance of setting the warmup phase
correctly and utilizing multiple forks for benchmark accuracy. With
a large number of benchmarks, expecting developers to pick the
“right” values becomes unrealistic. Our dynamic reconfiguration
approach helps in this regard by deciding based on data and per
benchmark when the results are accurate enough.

Iteration Time and Forks. The warmup and measurement times
affect benchmark result accuracy and control the frequency with
which stability checkpoints occur. JMH 1.21 changed the iteration
time from 1s to 10s, and reduced the number of forks from ten to
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five [47, 48]. The OpenJDK team argued that 1s is too short for large
workloads [48]. We performed an additional analysis whether result
accuracy changes when switching from 10s to 1s but did not ob-
serve differences in most cases. Hence, we decided for 1s iterations
to give the dynamic reconfiguration approach more checkpoints
to assess a benchmark’s stability. Whereas 10s is a safe choice for
static configurations, we believe that 1s provides more flexibility
and works better with dynamic reconfiguration. Our results sup-
port reducing to five forks, which indicates that most fork-to-fork
variability is captured.

Choosing Stability Criteria Parameters. Choosing optimal meta-
parameters for the stability criteria can affect the effectiveness
and efficiency of the overall approach. Dynamic reconfiguration
supports the sliding-window size sW , the threshold t when a sta-
bility criterion value (CV, RCIW, or KLD) is considered stable, and
stability-criterion-dependent parameters (see Section 5.3). We base
our parameters on common statistical practice and previous re-
search [18, 20] (see Section 5.3). Only the sliding window size sW
is manually set by us. Our empirical evaluation shows that the
employed parameters work well across all study subjects. However,
future research should explore the meta-parameter space through
experimentation. It is important to emphasize that choosing these
meta-parameters is an offline activity, which is done once and be-
fore executing the benchmarks; hence, the cost for choosing these
parameters is not part of the overhead estimations in RQ 2.

Unreachable Stability Criteria. Although the stability criteria is
frequently not met for warmup iterations or forks of individual
benchmarks, at least when using KLD and RCIW, the overall run-
time of the full benchmark suites is considerably reduced (see Sec-
tion 5.4). Dynamic reconfiguration uses upper bounds for warmup
iterations (wimax ) and forks (fmax ); therefore, it does not exceed
the runtime of standard JMH with static configuration. In case of
an unreachable stability criteria, our JMH implementation warns
the developer, who can then adjust this benchmark’s upper bounds
to obtain better results. Our approach could also automatically lift
the caps if the desired result quality is not reached, which should
be explored by future research.

7 THREATS TO VALIDITY
Construct Validity. Our pre-study (see Section 3) relies on infor-

mation extracted from source code, i.e., configurations based on
JMH annotations. We do not consider overwritten configurations
through CLI arguments, which might be present in build scripts
or documentation in the repositories. Reported runtimes do not
consider fixture (setup and teardown) times, JVM startup, and time
spent in the benchmark harness of JMH; and they assume iteration
times are as configured, while in reality they are minimum times.
Therefore, reported times might slightly underestimate the real
execution times.

The results and implications from RQ 1 are based on the notion
of benchmark result similarity. We assess this through statistical
A/A tests (based on bootstrap confidence intervals for the ratio
of means) and mean performance change rate, similar to previous
work [10, 33]. Other tests for the similarity of benchmark results,

such as non-parametric hypothesis tests and effect sizes [12, 33],
might lead to different outcomes.

We base the time savings from RQ 2 on overhead calculations
from a single project and assume this overhead is constant for all
stoppage points and benchmarks. There is hardly any reason to
believe that overheads change between study subjects, benchmarks,
and stoppage points, because the number of data points used for
stoppage criteria computation are similar. This is due to how JMH
and our approach work (see Sections 2 and 4), and how our experi-
ment is designed (see Section 5): (1) the measurement timemt is
fixed, irrespective of the benchmark workload; (2) the number of
iterationsmi and forks f is fixed; (3) benchmark fixtures, i.e., setup
and teardown, are constant and of negligible duration compared to
the measurement duration; and (4) the stoppage criteria calculation
uses a sliding-window approach (sW ) and, therefore, the number
of iterations used for the calculation is constant.

Further, we perform post-hoc analysis on a single benchmark
execution data set for all stoppage criteria. That is, we execute the
benchmark suites with five forks and 100 measurement iterations à
1s and then compute the stoppage points. Computing the stoppage
points while executing test suites might lead to slightly different
results.

Finally, we use a sliding-window approach for determining the
end of the warmup phase with a window size (sW ) of five. Different
window sizes might impose a larger runtime overhead and change
the stoppage point outcomes.

Internal Validity. Internal validity is mostly concerned with our
performance measurement methodology and the employed thresh-
olds. We follow measurement best practice [18] and run experi-
ments on a bare-metal machine [49] to reducemeasurement bias [11,
15, 37, 40].We did not explicitly turn off software and hardware opti-
mizations, which might affect benchmark variability and, therefore,
our results.

Regarding the thresholds, we started from previous works [18,
20] and adapted them to fit the context of microbenchmarks. As we
used the same thresholds for all benchmarks and projects, we are
confident that they are generally applicable for Java microbench-
marks executed on a similar machine to ours.

Further, the times reported in Section 3 rely on the JMH version
of a benchmark; we applied simple heuristics to extract the version,
which might not be fully accurate in case of, for instance, multi-
module projects or dynamic JMH version declarations.

External Validity. Generalizability might be affected with respect
to the studied projects. We only focus on OSS projects from Github,
and it is unclear whether our findings are equally valid in the
context of industrial software or projects hosted on other plat-
forms. Especially, the ten selected projects for our empirical evalu-
ation (see Section 5) might not be a representative sample for all
JMH projects. Due to the long benchmark suite execution times,
more projects would not have been feasible to study. We aimed for
a diverse set of projects, spanning multiple domains (see Table 1),
covering ~8% of the benchmarks from the pre-study (see Section 3).

The effectiveness and efficiency results of dynamic reconfigu-
ration depends on the environment used for executing the bench-
marks. Our experimental evaluation favors internal validity over
external validity by using a controlled, bare-metal environment.
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Therefore, we can be more confident that the reported comparisons
between study subjects and stoppage criteria are indeed correct and
not due to uncontrollable factors present in virtualized and cloud en-
vironments. Executing benchmarks with dynamic reconfiguration
in such other environments might lead to different results.

Moreover, our focus has been on Java projects that use JMH
as their benchmarking framework. Although the concepts from
Section 4 also translate to other frameworks and languages, the
exact results might be different. We opted for Java/JMH because
(1) it is a dynamically compiled language where warmup phases
and multiple forks are essential, (2) JMH benchmark suites are long
running [32] and can benefit greatly from dynamic reconfiguration,
and (3) JMH is a mature framework with many features offering
great opportunities for our approach.

Finally, switching to different Java virtual machines, such as
Eclipse OpenJ9 or Graal, might change the results due to different
performance characteristics.

8 RELATEDWORK
Performance testing is a form of measurement-based performance
engineering [52], which comes in two main flavors: system-level
tests and method/statement-level tests. Historically, research fo-
cussed on system-level tests [26, 38, 51], such as load and stress test-
ing, withmore recent advances targeting industrial applicability and
practice [17, 41]. The other flavor, i.e., software microbenchmarks
and performance unit tests, has only recently gained popularity in
research. Studies on OSS projects [36, 49] found that adoption lags
behind their functional counter-parts, i.e., unit tests. One problem
is that handling performance tests is complex and requires in-depth
knowledge from developers. To reduce this friction, Ding et al. [16]
studied utilizing unit tests for assessing performance properties.
Bulej et al. [9] proposed a framework that lets developers specify
performance assertions and handles rigorous statistical evaluation.
Horký et al. [23] compose performance unit test outcomes into
code documentation to raise performance awareness, and Dama-
sceno Costa et al. [12] uncover bad practices in microbenchmark
code through static analyses. Generating tests removes the need
to write tests by hand: AutoJMH helps avoiding pitfalls rooted in
compiler optimization [44], Pradel et al. [42] generate performance
regression tests for concurrent classes, and PerfSyn synthesizes
inputs through mutation that expose worst-case performance be-
haviour [50]. Our work is orthogonal to the aforementioned works:
it dynamically adapts software microbenchmark configurations to
stop their execution once their result is stable.

Long execution times [17, 24, 32] and uncertain results [33, 37]
are well-known to complicate the usage of performance tests in
general, including software microbenchmarks. There are a few
approaches that reduce the time spent in performance testing ac-
tivities without considering result quality: (1) predicting commits
that are likely to impact performance [24, 45], (2) prioritizing [39]
and (3) selecting [3, 14] the tests in a suite that are more likely to
expose performance changes. Our approach pursues the same goal
of reducing benchmarking time, but with a focus on running all
benchmarks (similar to prioritization) as long as necessary while
maintaining the same result quality.

Result quality is impaired by not running enough measurements
as well as measurement bias, which requires careful experiment
planning and execution [7, 11, 15, 18, 19, 28, 40]. To mitigate mea-
surement bias, Georges et al. [18] outlined a rigorous methodology
how to asses performance of Java programs, which we base our
measurement technique on. Using the correct statistical techniques
to assess performance is paramount, with estimated confidence in-
tervals using bootstrap being the state-of-the-art [8, 9, 27, 33]. One
of our stopping criteria is based on and our result quality evaluation
uses confidence intervals with bootstrap. To decide how many mea-
surements are enough, approaches using statistical techniques have
been proposed, employing CV [18, 37], confidence intervals [25, 37],
and the Kullback-Leibler divergence (KLD) [20]. With these, perfor-
mance experiments such as benchmark executions run until their
results are accurate/stable enough and then abort execution, ideally
reducing execution time. Our stoppage criteria use these three tech-
niques and apply them in the context of software microbenchmarks
after the warmup phase and after every fork.

Closest to our approach are the ones by Maricq et al. [37] and
He et al. [20]. Maricq et al. [37] estimate the number of trials and
iterations using a bootstrap technique. While they perform this
estimation before executing benchmarks, we evaluate result quality
during execution. He et al. [20] stop system-level performance
tests executed in cloud environments, once they reach a certain
stability criteria. Different from the benchmarks used in their study,
microbenchmarks are much shorter, with runtimes in the order
of seconds instead of multiple hours. Our work builds on top of
their statistics-based approach using KLD for system benchmarks,
adapts it for microbenchmarks and extends it to other stoppage
criteria.

9 CONCLUSIONS
This paper introduced a dynamic reconfiguration approach for
software microbenchmarks, which reduces benchmark execution
time and maintains the same result quality.

In a pre-study based on real-world configurations of 13,387 mi-
crobenchmarks coming from 753 projects, we find that developers
make extensive use of custom configurations to considerably re-
duce runtimes for 34% of the benchmarks. Still, about 15% of the
projects have benchmark suite runtimes of more than 3 hours.

Our dynamic reconfiguration approach implements data-driven
decisions to stop microbenchmark executions, assisting developers
with the intricate task of correctly configuring microbenchmarks.
With overheads between 1% and 11%, it achieves a time reduction
of 48.4% to 86.0%, with between 78.8% and 87.6% of the microbench-
marks preserving their result quality.

These results show that dynamic reconfiguration is highly effec-
tive and efficient, and we envision it to enable regular performance
microbenchmarking activities, such as part of CI.
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